Electronic Structures of *cis* and *trans* Tetraammineruthenium(III) Complexes

SUSUMU KOHATA

Yatsushiro College of Technology, Hirayamachinmachi, Yatsushiro 866, Japan

and AKIRA OHYOSHI*

Faculty of Engineering, University of Kumamoto, Kumamoto 860, Japan

Received October 20, 1981

Introduction

The stereochemical isomers of the complexes $\operatorname{RuCl}_2(\operatorname{NH}_3)_4^+[A]$ and $\operatorname{RuCl}(\operatorname{OH}_2)(\operatorname{NH}_3)_4^{2+}[B]$ reveal a different profile in chemical behavior: (i) the redox potential of the *trans*-[a] is more negative than that of the *cis*-[A] [1], (ii) the *cis*-[A] gives more increased rate constant for the aquation reaction than does the *trans*-[A], while (iii) the anation reaction proceeds only in the *trans*-[B], and (iv) the thermal stability in a solid state is enhanced in the *trans*-[A] rather than in the *cis*-[A]. In order to elucidate these behavior, electronic structures have been examined for stability or reactivity of two stereochemical isomers of tetraammineruthenium(III) complexes.

Method

The method used for MO calculation is the INDOtype Unrestricted Hartree Fock (UHF) method, which has been described in detail elsewhere [2]. All of the parameters used here are the same one as presented previously [3].

*To whom correspondence should be addressed.

Results and Discussion

The d⁵ electron-configurations of Ru(III) have investigated for two cases of $I[(d_{xy}^2)/(d_{xz}^2, d_{yz}^4)]$ and II $[(d_{xz}^2, d_{yz}^2)/(d_{xy}^1)]$. From the total energies the configuration I is taken as a ground state; those are I (-2203.21 eV), II (-2202.84 eV) for *trans*-RuCl₂(NH₃)₄⁺, and I (-2241.34 eV), II (-2241.32 eV) for *trans*-RuCl(OH₂)(NH₃)²⁺. The reason for stabilizing this configuration is attributable to the d_{π} - p_{π} bonding interactions between the Ru halfoccupied d_{π} -orbital and the Cl p_{π} -orbital in the configuration I. Calculated results are shown in Table I.

Suggested electronic stability by the total energy is cis-RuCl₂(NH₃)₄⁺ < trans-RuCl₂(NH₃)₄⁺, and trans-RuCl(OH₂)(NH₃)₄²⁺ < cis-RuCl(OH₂)(NH₃)₄²⁺. The stability then may not necessarily depend on the stereochemical configuration with respect to these four complexes.

Both in [A] and [B] complexes, the Ru–NH₃ bond is slightly stronger in the *trans*-isomer than in the *cis*-isomer of *ca*. 0.1–0.4 eV (see the value of E_{Ru-NH_3}). The Ru–OH₂ bond strength of the complex [B] is weakened *ca*. 1.0 eV for *cis*-[B] and *ca*. 1.4 eV for *trans*-[B] relative to Ru(OH₂)(NH₃)₅³⁺ [3]. The chloride ligand then reveals a *trans* or *cis* influence on the water molecule, with the influence of the former being greater than that of the latter.

The redox potential for Ru^{III}/Ru^{11} couple (vs. SCE) observed is -0.274 V for *cis*-RuCl₂(NH₃)₄⁺ and -0.380 V for *trans*-RuCl₂(NH₃)₄⁺ [1]. The calculated SOMO energy level is *trans* (-6.75 eV) < *cis* (-5.81 eV), which implies that *trans*-RuCl₂(NH₃)₄⁺ is less easily reduced than is the *cis*. The electrochemical stability of two isomers is consequently supported as *cis*-complex < *trans*-complex.

The kinetic studies have showed that the anation reaction proceeds only in *trans*-RuCl(OH₂)(NH₃) $_4^{2+}$

TABLE 1. Electronic Structures of RuCl₂(NH₃)₄⁺[A] and RuCl(OH₂)(NH₃)₄²⁺[B].

Complex	Cis-isomer		Trans-isomer	
	[A] ^a	[B]	[A]	[B]
E_{AB}^{b} (eV)				
cis-Ru–NH ₃	-10.34	-10.98	-10.44	-10.58
trans-Ru-NH3	-10.33	-10.78		
Ru-Cl	-14.75	-15.28	14.43	-15.47
Ru–OH ₂		-4.70		-4.36
SOMO energy (eV)	5.81	-10.10	-6.75	-10.18
LUMO energy (eV)	-4.53	-9.07	-4.66	-99.14
Total nergy (eV)	- 2202.97	-2241.59	-2203.21	-2241.34

^aFrom Ref. 3. ^bA large value of E_{AB} indicates a strong interaction between atoms A and B.

through an $S_N 2$ type mechanism^{*}, but it scarecely proceeds in the *cis*-isomer:

trans-RuCl(OH₂)(NH₃)₄²⁺[B]
$$\xrightarrow{\text{Cl}}$$
 trans-RuCl₂-

 $(NH_3)_4^+[A] + H_2O$. The difference of the total energy between [B] and [A] is minor when trans- $(\Delta E = 38.13 \text{ eV})$ rather than *cis*-configurations $(\Delta E = 38.63 \text{ eV})$ are taken. This difference suggests that the trans-[B] may be favorable to the above anation reaction. The proposed reaction path might be an $S_N 2$ type mechanism: the LUMO energy level is -9.07 and -9.14 eV for cis-[B] and trans-[B] respectively, suggesting less advantage of *trans*-[B] for this associative mechanism. The electronic repulsion between two halogens concerning the anation product [A] is enhanced when they are at the cisposition (1.258 eV) rather than being at the transposition (0.684 eV). This remarkable repulsion in cis-configuration should make it too difficult for the chloride ion to migrate from the outer-sphere to the coordination sphere.

The aquation reaction proceeds in both isomers of [A] through an $S_N 2$ type mechanism^{**}, but the rate constant of *cis*-[A] is 2.5-fold larger than that of *trans*-[A]:

cis or trans-RuCl₂(NH₃)₄⁺[A]
$$\xrightarrow{\text{H}_2\text{O}}$$
 cis or trans

RuCl(OH₂)(NH₃)₄²⁺[B] + Cl⁻. The difference of the total energy between [A] and [B] again suggests that the *trans* isomer may have a preference for the aquation reaction. The LUMO energy levels, however, are -4.53 and -4.66 eV for *cis*-[A] and *trans*-[A], respectively. The larger rate constant (or small value of ΔH^{\pm}) of *cis*-[A] through an S_N2 reaction path

may be elucidated with this LUMO level, because there is no remarkable repulsion between coordinated ligand and introduced ligand.

The thermal stability of $[RuCl_2(NH_3)_4]Cl[A]$ is investigated in the solid state. In this complex, the deammonation-anation reaction takes place:

cis- or trans-[RuCl₂(NH₃)₄]Cl (s)
$$\longrightarrow$$
 mer-[Ru-

Cl₃(NH₃)₃] (s) + NH₃(g). The initiation temperature for the deammonation is 200 and 227 °C for *cis*-[A] and *trans*-[A] respectively, on a TG-curve with a heating rate of 10°C min⁻¹. The heat for the above deammonation step, estimated from DTA-curve, is *ca.* 11 kJ mol⁻¹ for *cis*[A] and *ca.* 60 kJ mol⁻¹ for *trans*-[A]. Thermal analysis data lead to a consideration that the order of thermal stability is *cis*-[A] < *trans*[A], consistent with the presumption from the calculated total energy. The order of deammonation also corresponds to that of the Ru–NH₃ bond strength indicated by the E_{Ru-NH₃} value; *cis*-[A] (-10.33 eV for *trans*-Ru–NH₃) < *trans*-[A] (-10.44 eV for *cis*-Ru–NH₃).

Acknowledgement

All of the calculations were carried out at the Data Processing Center in Kyushu University. The present work has been partially supported by the Grant-in Aid of the Ministry of Education, Science and Culture, Japan (No. 274191) to one of us (S. Kohata).

References

- 1 C. M. Elson, I. J. Itzkovitch, J. McKenny and J. A. Page, *Can. J. Chem.*, 53, 2922 (1975).
- 2 S. Sakaki, H. Kikkawa, H. Kato and S. Yoshida, Bull. Chem. Soc. Jpn., 49, 76 (1976).
- 3 S. Kohata, S. Sakaki and A. Ohyoshi, Bull. Chem. Soc. Jpn., 51, 768 (1978).

^{*}Kinetic parameters for *trans*-[B]; $k = 1.42 \times 10^{-4} M^{-1}$ -S⁻¹ (54.7 °C, $\mu = 0.1$), $\Delta H^{\neq} = 89.5 \text{ kJ mol}^{-1}$, $\Delta S^{\neq} = -25 \text{ JK}^{-1} \text{ mol}^{-1}$. For *cis*-[B], k is significantly small.

^{**}Kinetic parameters for *cis*-[A]; k = 7.55 × 10⁻⁴ (75.0 °C, μ = 0.1), H = 77.0, Δ H^{\neq} = 77.0, Δ S^{\neq} = -79. For *trans*-[A]; k = 3.02 × 10⁻⁴ (75.0 °C, μ = 0.1), Δ H^{\neq} = 92.9, Δ S^{\neq} = -46.